64 research outputs found

    Editorial: Organization of the White Matter Anatomy in the Human Brain

    Get PDF
    International audienceEditorial on the Research Topic Organization of the White Matter Anatomy in the Human Brain Between nineteenth and twentieth centuries, neurosciences experienced the first sharing of experiences and competences between the world of brain anatomy and clinics. The improvements in the knowledge of human white matter (WM) anatomy provided the natural background to the structural definition of a wide spectrum of clinical syndromes. This "disconnection" experience was the first field of strict integration between the WM anatomical and clinical skills, and constituted the hard core for the development of the modern neurosciences over the last century (Catani and ffytche, 2005). While the second half of twentieth century has seen the neurophysiology taking a front role in the definition of the physiological and physio-pathological processing of brain circuitries, the last decade has definitively brought neuroimaging into the world of neuroscience. The functional magnetic resonance imaging (fMRI) and diffusion-weighted MRI (DWI) tractography have successively opened a new era for a better understanding of functional and structural anatomy of the human brain (Le Bihan and Johansen-Berg, 2012; Smith et al., 2013). In particular, DWI-based tractography was the first tool allowing the exploration of human WM in vivo with an unprecedented level of details, and it shed a new light in the knowledge of the brain anatomy that became, finally, more accessible (Jeurissen et al., 2019). Beyond the technical aspects related to the continuous necessary improvement of this approach (Maier-Hein et al., 2017), tractography produced a conceptual revolution leading that the wiring diagram of brain connections regained a center scene of neuroscience research. Such a revolution was not only in research but also in the clinical and neurosurgical domains and opened the "connectome" era (Sporns, 2013). The fields of neuroanatomy, neuroimaging, neurophysiology and clinical researches are currently closer as never before. In fact, two decades of exploration of brain structure and functional processing with an unprecedented level of sensitivity opened new challenges. Among others, the research for a ground truth in structural anatomy is definitely the most impressive, especially considering the basic and conceptual consequences of that in assessing a reliable knowledge of brain processing, clinics and plasticity. This is what the vast majority of the articles in this Research Topic highlight by describing association WM pathways (Bao et al.; David et al.; Panesar et al.), cortico-striatal Cacciola et al. and cortico-thalamic (Maffei et al.; Roddy et al.; Sun et al.) projection pathways

    The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification

    Get PDF
    The heterogeneity and complexity of white matter (WM) pathways of the human brain were discretely described by pioneers such as Willis, Stenon, Malpighi, Vieussens and Vicq d’Azyr up to the beginning of the 19th century. Subsequently, novel approaches to the gross dissection of brain internal structures have led to a new understanding of WM organization, notably due to the works of Reil, Gall and Burdach highlighting the fascicular organization of WM. Meynert then proposed a definitive tripartite organization in association, commissural and projection WM pathways. The enduring anatomical work of Dejerine at the turn of the 20th century describing WM pathways in detail has been the paramount authority on this topic (including its terminology) for over a century, enriched sporadically by studies based on blunt Klingler dissection. Currently, diffusion-weighted magnetic resonance imaging (DWI) is used to reveal the WM fiber tracts of the human brain in vivo by measuring the diffusion of water molecules, especially along axons. It is then possible by tractography to reconstitute the WM pathways of the human brain step by step at an unprecedented level of precision in large cohorts. However, tractography algorithms, although powerful, still face the complexity of the organization of WM pathways, and there is a crucial need to benefit from the exact definitions of the trajectories and endings of all WM fascicles. Beyond such definitions, the emergence of DWI-based tractography has mostly revealed strong heterogeneity in naming the different bundles, especially the long-range association pathways. This review addresses the various terminologies known for the WM association bundles, aiming to describe the rules of arrangements followed by these bundles and to propose a new nomenclature based on the structural wiring diagram of the human brain

    A Missing Connection: A Review of the Macrostructural Anatomy and Tractography of the Acoustic Radiation

    Get PDF
    The auditory system of mammals is dedicated to encoding, elaborating and transporting acoustic information from the auditory nerve to the auditory cortex. The acoustic radiation (AR) constitutes the thalamo-cortical projection of this system, conveying the auditory signals from the medial geniculate nucleus (MGN) of the thalamus to the transverse temporal gyrus on the superior temporal lobe. While representing one of the major sensory pathways of the primate brain, the currently available anatomical information of this white matter bundle is quite limited in humans, thus constituting a notable omission in clinical and general studies on auditory processing and language perception. Tracing procedures in humans have restricted applications, and the in vivo reconstruction of this bundle using diffusion tractography techniques remains challenging. Hence, a more accurate and reliable reconstruction of the AR is necessary for understanding the neurobiological substrates supporting audition and language processing mechanisms in both health and disease. This review aims to unite available information on the macroscopic anatomy and topography of the AR in humans and non-human primates. Particular attention is brought to the anatomical characteristics that make this bundle difficult to reconstruct using non-invasive techniques, such as diffusion-based tractography. Open questions in the field and possible future research directions are discussed

    Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection

    Get PDF
    International audienceWe combined the neuroanatomists' approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways

    The Superoanterior Fasciculus (SAF): A Novel White Matter Pathway in the Human Brain?

    Get PDF
    Fiber tractography (FT) using diffusion magnetic resonance imaging (dMRI) is widely used for investigating microstructural properties of white matter (WM) fiber-bundles and for mapping structural connections of the human brain. While studying the architectural configuration of the brain’s circuitry with FT is not without controversy, recent progress in acquisition, processing, modeling, analysis, and visualization of dMRI data pushes forward the reliability in reconstructing WM pathways. Despite being aware of the well-known pitfalls in analyzing dMRI data and several other limitations of FT discussed in recent literature, we present the superoanterior fasciculus (SAF), a novel bilateral fiber tract in the frontal region of the human brain that—to the best of our knowledge—has not been documented. The SAF has a similar shape to the anterior part of the cingulum bundle, but it is located more frontally. To minimize the possibility that these FT findings are based on acquisition or processing artifacts, different dMRI data sets and processing pipelines have been used to describe the SAF. Furthermore, we evaluated the configuration of the SAF with complementary methods, such as polarized light imaging (PLI) and human brain dissections. The FT results of the SAF demonstrate a long pathway, consistent across individuals, while the human dissections indicate fiber pathways connecting the postero-dorsal with the antero-dorsal cortices of the frontal lobe

    Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review

    Get PDF
    Purpose: The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. Methods: A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. Results: A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). Conclusions: A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity

    Imaging practice in low-grade gliomas among European specialized centers and proposal for a minimum core of imaging

    Get PDF
    Objective: Imaging studies in diffuse low-grade gliomas (DLGG) vary across centers. In order to establish a minimal core of imaging necessary for further investigations and clinical trials in the field of DLGG, we aimed to establish the status quo within specialized European centers. Methods: An online survey composed of 46 items was sent out to members of the European Low-Grade Glioma Network, the European Association of Neurosurgical Societies, the German Society of Neurosurgery and the Austrian Society of Neurosurgery. Results: A total of 128 fully completed surveys were received and analyzed. Most centers (n=96, 75%) were academic and half of the centers (n=64, 50%) adhered to a dedicated treatment program for DLGG. There were national differences regarding the sequences enclosed in MRI imaging and use of PET, however most included T1 (without and with contrast, 100%), T2 (100%) and TIRM or FLAIR (20, 98%). DWI is performed by 80% of centers and 61% of centers regularly performed PWI.ConclusionA minimal core of imaging composed of T1 (w/wo contrast), T2, TIRM/FLAIR, PWI and DWI could be identified. All morphologic images should be obtained in a slice thickness of 3mm. No common standard could be obtained regarding advanced MRI protocols and PET. Importance of the study: We believe that our study makes a significant contribution to the literature because we were able to determine similarities in numerous aspects of LGG imaging. Using the proposed minimal core of imaging in clinical routine will facilitate future cooperative studies

    Imaging practice in low-grade gliomas among European specialized centers and proposal for a minimum core of imaging.

    Get PDF
    OBJECTIVE: Imaging studies in diffuse low-grade gliomas (DLGG) vary across centers. In order to establish a minimal core of imaging necessary for further investigations and clinical trials in the field of DLGG, we aimed to establish the status quo within specialized European centers. METHODS: An online survey composed of 46 items was sent out to members of the European Low-Grade Glioma Network, the European Association of Neurosurgical Societies, the German Society of Neurosurgery and the Austrian Society of Neurosurgery. RESULTS: A total of 128 fully completed surveys were received and analyzed. Most centers (n = 96, 75%) were academic and half of the centers (n = 64, 50%) adhered to a dedicated treatment program for DLGG. There were national differences regarding the sequences enclosed in MRI imaging and use of PET, however most included T1 (without and with contrast, 100%), T2 (100%) and TIRM or FLAIR (20, 98%). DWI is performed by 80% of centers and 61% of centers regularly performed PWI. CONCLUSION: A minimal core of imaging composed of T1 (w/wo contrast), T2, TIRM/FLAIR, PWI and DWI could be identified. All morphologic images should be obtained in a slice thickness of ≤ 3 mm. No common standard could be obtained regarding advanced MRI protocols and PET. IMPORTANCE OF THE STUDY: We believe that our study makes a significant contribution to the literature because we were able to determine similarities in numerous aspects of LGG imaging. Using the proposed "minimal core of imaging" in clinical routine will facilitate future cooperative studies

    Heterotopic Ossification in Vertebral Interlaminar/Interspinous Instrumentation: Report of a Case

    Get PDF
    We present here a rare case of heterotopic ossification in interspinous/interlaminar Coflex device. The classical surgical indications for these implants are degenerative canal stenosis, discogenic low back pain, disk herniations, facet syndrome, and instability. However, fractures of spinous processes are a potential risk after interspinous/interlaminar devices’ implantation. Recently, heterotopic ossification, a well-known complication of hip and knee arthroplasty, has been reported after cervical and lumbar prosthesis. We performed undercutting and implantation of the dynamic interspinous/interlaminar device to treat an adult male patient with L4-L5 stenosis. The patient underwent 45-day imaging and clinical followup, and we observed both a neurological and imaging improvement. A CT bone scan, performed 3 years after surgery for recurrence of neurogenic claudication, showed a new stenosis due to an abnormal ossification all over the device. To our knowledge, this is the first reported case of heterotopic ossification in an interspinous/interlaminar dynamic device. Accordingly, we aim to suggest it as a new complication of interspinous/interlaminar devices
    corecore